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Abstract. We present a decomposition method for indefinite quadratic programming problems
havingn variables andm linear constraints. The given problem is decomposed into at mostm QP
subproblems each havingm linear constraints andn − 1 variables. All global minima, all isolated
local minima and some of the non-isolated local minima for the given problem are obtained from
those of the lower dimensional subproblems. One way to continue solving the given problem is to
apply the decomposition method again to the subproblems and repeatedly doing so until subproblems
of dimension 1 are produced and these can be solved directly. A technique to reduce the potentially
large number of subproblems is formulated.

Key words: Local and global optimization, Non-convex quadratic program, Parametric linear pro-
gramming.

1. Introduction

We propose a method to solve

min{c′x + x′Cx | Ax 6 b}, (1.1)

whereC is (n, n), symmetric and indefinite,c andx aren-vectors,A is an(m, n)
matrix andb is anm-vector. Matrix transposition is denoted by a prime (′) and all
non-primed vectors will be assumed to be column vectors.In will denote the(n, n)
identity matrix and En will denote Euclideann-space. Let

S = {x | Ax 6 b}
denote the feasible region for (1.1). When it is necessary to discuss the individual
constraints for (1.1), we will writeS in the form

S = {x | a′ix 6 bi, i = 1, . . . , m},
so thata′i denotes theith row ofA.

We require the following to be satisfied throughout this paper.
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ASSUMPTION 1.1. (a) S 6= ∅, and (b)S is bounded.

The primary difficulty in solving (1.1) is that it may possess many local min-
imizers. We address this difficulty by utilizing results from our previous paper [4],
which we briefly summarize here. In [4], parametric quadratic programming is
used to find all isolated local minimizers and some non-isolated local minimizers
for the non-convex QP

min{c′x + x′DQ′x | Ax 6 b} (1.2)

wherec, A, b andx are as in (1.1), andD andQ are(n, k) matrices withk < n.
The method proceeds by formulating the parametric LP

min{c′x + t ′Q′x | Ax 6 b, D′x = t}, (1.3)

wheret is a parameter vector in Ek. LettingR(t) denote the set of feasible solutions
for (1.3), the derived problem for (1.2) is

min{f (t) | t ∈ Ek}, (1.4)

where

f (t) =
{

min {c′x + t ′Q′x | x ∈ R(t)}, if R(t) 6= φ,
+∞, otherwise.

(1.5)

It is shown in [4] that the isolated local minimizers of (1.2) and (1.4) are in one
to one correspondence. In particular, ift∗ is a local minimizer for (1.4) then any
optimal solution for (1.3) witht = t∗ is a local minimizer for (1.2).

Although the theory was developed for arbitraryk < n, the numerical proced-
ures developed in [4] were limited to the case ofk = 1 in which case (1.3) has just
a single parameter and can be solved using the methods in [1]. In this paper, we
address the problem ofk = n − 1 by using a decomposition approach. We begin
with the model problem (1.1). We then give a method which will either construct
matricesD andQ satisfyingx′DQ′x = x′Cx (so that the model problem (1.1) can
be rewritten in the model form (1.2)), or, determine that no such matricesD andQ
exist.

When suchD andQ do indeed exist, the decomposition method then generates
m subproblems each of dimensionn − 1, wherem is the number of constraints
in (1.1). Combining the local/global solutions of all of thesem subproblems gives
the local minima and the global minimum for the given problem. Each of these
smaller problems is in turn decomposed intom subproblems with their dimension
reduced by 1. The process continues by generating smaller and smaller dimensional
subproblems until the subproblem can be solved directly. One possibility is a one-
dimensional subproblem. Other possibilities will be discussed.

For the case that no suchD andQ exist, we will show that eitherC is positive
semi-definite or negative semi-definite. In the former case, (1.1) is a convex quad-
ratic programming problem and may be solved by any convex QP algorithm. In
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the latter case, (1.1) is a concave quadratic minimization problem. This is a very
difficult problem and we have no suggestions as to how it may be solved.

We will give numerical examples to illustrate both the decomposition method
and the subproblem reduction procedure.

2. A Decomposition Method

Here we present a decomposition method for (1.1). We will begin with a detailed
statement of the method and then establish its properties in Theorem 2.1. We will
give an example of applying the method to a small numerical problem. The method
requires thatC be expressed in a different form. This is performed by Procedure
91 which is developed in detail in the Appendix.

2.1. DECOMPOSITION METHOD

Use Procedure91(C) to obtain matricesQ andD, each having dimensions(n, n−
1) and satisfyingC = 1

2[DQ′ + QD′] and rank(D)= n − 1. Then fork =
1,2, . . . , m construct and solve the following subproblems. Define the(n, n)mat-
rix B ′k = [D, ak]. If Bk is singular, thekth subproblem is considered vacuous. If
Bk is nonsingular, partitionB−1

k asB−1
k = [Hk, dk], whereHk is (n, n− 1) anddk

is the last column ofB−1
k . Thekth subproblem is then to find all local minimizers

for then− 1 dimensional problem int

minimize : bkc
′dk + (H ′kc + bkQ

′dk)′t + t ′H ′kCHkt
subject to: a′iHkt 6 bi − bka′idk, i = 1, . . . , m, i 6= k,
and d ′kQt 6 −c′dk.

 (2.1)

For thekth subproblem, letpk denote the number of local minimizers so obtained,
let these local minimizers be denoted bytki , i = 1, . . . , pk and letRk(t) denote the
feasible region for (2.1). Fori = 1, . . . , pk , xki = Hktki+bkdk is a local minimum
for (1.1), providedtki is also a local minimizer for all subproblemsj such that
tki ∈ Rj . A global minimizer for (1.1) is then the local minimizer which gives the
best objective function value.

In the following theorem, we formulate the properties of the Decomposition
Method. The proof of the theorem is constructive and gives insight into the method.

THEOREM 2.1. Let Assumption 1.1 be satisfied, assumeC is indefinite and that
the Decomposition Method is applied to (1.1). Then the method determines all
global minimizers, all of the isolated local minimizers and some of the non-isolated
local minimizers for (1.1).

Proof.BecauseC is indefinite, Procedure91(C) produces two matricesD and
Q, each of dimension(n, n−1) and with rank(D) = n−1. Thus, (1.1) is equivalent
to (1.2) withk = n− 1. The parametric LP corresponding to (1.3) is then

min{c′x + t ′Q′x | D′x = t, a′ix 6 bi, i = 1, . . . , m}, (2.2)
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wheret has dimensionn − 1. Because of Assumption 1.1(a), the feasible region
for (2.2) is non-null for certaint . Furthermore, from Assumption 1.1(b), there is
an optimal solution of (2.2) which is an extreme point for allt for which (2.2) has
a feasible solution. Because rank(D) = n − 1, there are at mostm extreme points
for (2.2) each corresponding to the(n − 1) equality constraints of (2.2) plus one
of them inequality constraints. Consider thekth possibility. LetBk be as in the
statement of the Decomposition Method. IfBk is singular, then thekth inequality
constraint does not give rise to an extreme point and thekth subproblem need not
be considered further.

Otherwise, the extreme pointx = x(t) is the solution of then simultaneous
linear equations

D′x(t) = t, a′kx(t) = bk.

LettingHk anddk be as in the statement of the Decomposition Procedure, it follows
that

x(t) = Hkt + bkdk (2.3)

is optimal for (2.2) for allt such thatx(t) satisfies primal and dual feasibility for
(2.2). Primal feasibility is accounted for by substitutingx(t) into the remaining
constraints of (2.2). This gives

a′iHkt 6 bi − bka′idk, i = 1, . . . , m, i 6= k. (2.4)

Since the first(n − 1) constraints of (2.2) are equality constraints, their dual
variables are unconstrained in sign. Thekth inequality constraint is active atx(t)
and its dual variable, namely−(c+Qt)′dk , must be non-negative. This requirement
reduces to

d ′kQt 6 −c′dk. (2.5)

Observe that the set of allt satisfying (2.4) and (2.5) is preciselyRk(t) in the
statement of the Decomposition Method. Thus, we have shown thatx(t) given by
(2.3) is optimal for (2.2) for allt ∈ Rk(t).

We next use (2.3) to express the optimal objective function value for (2.2), call
it Fk(t), explicitly in terms oft :

Fk(t) = c′x + t ′Q′x = bkc
′dk + (H ′kc + bkQ

′dk)′t + t ′Q′Hkt.

The quadratic term can be simplified somewhat. First observe that by writingBkB
−1
k =

In in terms of its partitions, it follows that

D′Hk = In−1. (2.6)

Next, because 2C = QD′ + DQ′, it follows from (2.6) that

2CHk = QD′Hk + DQ′Hk
= Q + D(Q′Hk).
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Multiplying on the left byH ′k gives

H ′kCHk =
1

2
[H ′kQ + Q′Hk],

which shows that

Fk(t) = bkc
′dk + (H ′kc + bkQ

′dk)′t + t ′H ′kCHkt (2.7)

The equivalent of (1.5) for (1.1) can now be expressed as

f (t) =


F1(t), if t ∈ R1(t),

F2(t), if t ∈ R2(t),

· · · · · ·
Fm(t), if t ∈ Rm(t).

(2.8)

Note that the problem

min{Fk(t) | t ∈ Rk(t)} (2.9)

is precisely the kth subproblem of the Decomposition Method. Lettki,
i = 1, . . . , pk be the local minimizers for (2.1) as in the statement of the
Decomposition Method. Then these are also local minimizers for (2.9). If for allj

such thattki ∈ Rj(t), tki is also a local minimizer for

min{Fj(t) | t ∈ Rj(t)},
thentki is a local minimizer for the problem

min{f (t) | t ∈ En−1},
wheref (t) is defined by (2.8). It now follows from Theorem 2.4 of [4] thatxki =
Hktki + bkdk is a local minimizer for (1.1) and this completes the proof. 2

The Decomposition Method can be used to solve (1.1) as follows. AssumingC

is indefinite, applying the Decomposition Method to (1.1) producesm subproblems
each havingm linear inequality constraints andn− 1 variables. Each of these sub-
problems will be either convex, indefinite or concave and the relevant possibility
may be determined by invoking Procedure91. In the convex case, the subproblem
may be solved by using any convex QP algorithm (eg [3] ). For the indefinite case,
the Decomposition Method may again be applied to producem further subprob-
lems each having dimensionn − 2. For the concave case, an appropriate solution
method must be utilized. Assuming the indefinite case applies to each subproblem,
eventually one dimensional subproblems will be produced and these can be solved
directly. The structure of this method is that of a tree. The top of the tree is (1.1).
Beneath it arem subproblems each having dimensionn − 1. Beneath eachn − 1
dimensional subproblem arem additional subproblems each of dimensionn − 2.
At the bottom of the tree are the one-dimensional subproblems.
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An obvious difficulty of this approach is that the number of subproblems will
be exponentially large. However, in Section 3 we will show that performing the
decomposition in a particular way will result in the number of subproblems being
reduced. The matricesD andQ are not uniquely determined and by constructing
them in a particular way, the subproblems may be reduced in number to between 1
andm.

Thereom 2.1 states that the Decomposition Method will determine all global
minimizers, all isolated local minimizers andsomeof the non-isolated local min-
imizers for (1.1). That notall are necessarily obtained is a consequence of the
underlying parametric method being used. See [4] for examples and discussion.

We illustrate the Decomposition Method and the tree of subproblems in

EXAMPLE 2.1.

minimize : −x1 − 2x2 − x3 + x′Cx
subject to: 0 6 xi 6 1, i = 1,2,3,

where

C =
 2 −0.5 4.5
−0.5 −1 −1

4.5 −1 5

 = [DQ′ + QD′]/2,

and for simplicity we take

D =
 1 0
−1 1

3 2

 and Q =
 2 1

0 −1
1 1

 .
There are six inequality constraints in the problem. Each generates a subprob-

lem with two variables. The objective function (with the constant omitted) and
constraints for each subproblem defined by (2.1) are summarized in Table 2.1. As
well, the feasible regions for the subproblems are shown together in Figure 2.1.

In this example, each of the six subproblems has exactly five constraints rather
than the six one might expect. This is because, for example, whenx1 = 0 is active,
its gradient is linearly dependent on that ofx1 6 1 and so produces a constraint of
the form 06 1.

Each of the six two-dimensional problems is non-convex and can be decom-
posed into at most five one-dimensional problems. Each such one-dimensional
problem can be viewed as minimizing a piece wise quadratic function over at most
five intervals. In each interval, the quadratic objective function may be strictly con-
vex, strictly concave or linear. It is a straightforward matter to determine the local
minima for the one-dimensional case. We omit the details of these calculations.
However, a typical one-dimensional piecewise function is illustrated in Figure 2.2.

An alternative way to proceed for this example is to note that the Hessian
matrices for each of the six two-dimensional subproblems all have exactly one neg-
ative eigenvalue. Each of these six subproblems could be solved using the method
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Table 2.1.Two-dimensional subproblems for Example 2.1

Active ’x’ Objective function Constraints

constraint

06 t1+ t2 6 5,

x1 = 0 1
5(t

2
1 + 4t1t2− 2t22 + 3t1 − 7t2) 06 −2t1 + 3t2 6 5,

9t1+ 2t2 > 8

16 t1+ t2 6 6,

x1 = 1 1
5(t1

2+ 4t1t2− 2t2
2+ 12t1 − 5t2− 8) −26 −2t1 + 3t2 6 3,

9t1+ 2t2 6 8

06 t2 6 2,

x2 = 0 1
2(4t1

2− 3t1t2− 2t2
2− 2t1+ 2t2) 06 2t1− 3t2 6 2,

9t1+ 2t2 > 8

16 t2 6 3,

x2 = 1 1
2(4t1

2− 3t1t2− 2t2
2 + 7t1+ 4t2− 8) −56 2t1− 3t2 6 −3,

9t1+ 2t2 6 8

06 t1+ t2 6 1,

x3 = 0 2t1
2 + 3t1t2 − t1− 3t2 06 t2 6 1,

9t1+ 2t2 6 8

26 t2 6 3,

x3 = 1 2t1
2+ 3t1t2− 10t1− 5t2 + 8 56 t1+ t2 6 6,

9t1+ 2t2 > 8

Figure 2.1. Two-dimensional feasible regions for Example 2.1.
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Figure 2.2. Typical piecewise function for one-dimensional subproblem.

Table 2.2.Optimal solutions for Example 2.1 and some variations

Linear Optimal Objective Point in Point in

term type value E2 E3

−x1 − 2x2 − x3 Global −3.5 (−0.5,1)′ (0.5,1, 0)′
Local −3.45 (−0.1,1.6)′ (0,1, 0.3)′

−x1 + 2x2 − x3 Global −0.125 (0.25,0)′ (0.25,0,0)′
Local 0.55 (−0.1,1.6)′ (0,1, 0.3)′
Local 0.5 (−0.5,1)′ (0.5,1, 0)′

−0.5x1 + 2x2 − x3 Global −0.05 (0.3,0.2)′ (0,0, 0.1)′
Local 0.55 (−0,1, 1.6)′ (0,1, 0.3)′
Local −0.03125 (0.125)′ (0.125,0, 0)′
Local 0.71875 (−0.625,1)′ (0.375,1, 0)′

of [4]. For problems with large numbers of constraints, this is a computationally
more attractive way to proceed.

Local minima for the two-dimensional problem are indicated in Figure 2.1. The
four points indicated by a cross within a circle (

⊗
) are local minima for at least

one, but not all the regions in which they lie and thus do not give local minima for
the three-dimensional problem. The two points indicated by a bullet (•) are local
minima for all the regions in which they lie and thus give local minima for the
original problem.

The local and global minimizers for Example 2.1 are shown in Table 2.2. Also
shown are the local and global solutions for two variations of Example 2.1. These
variations are obtained by changing the linear part of the objective function for
Example 2.1.

Murty [5] proposes a method to find a global minimum for (1.1). Although his
method does not find local minima as does ours, the tree structure of subproblems
for his method is analogous to ours. Murty first checks to see ifC in (1.1) is
positive semi-definite and if so, solves the problem using conventional convex QP
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algorithms, as do we. Otherwise, fork = 1, . . . , m the following subproblems are
considered:

min{c′x + x′Cx | a′ix 6 bi, i = 1, . . . , m, i 6= k, a′kx = bk}.
Each of thesem subproblems are considered separately. Each such subproblem
includes precisely one equality constraint. This can be used to express one of
the variables as an affine function of the remaining variables. Consequently, each
subproblem may be reformulated as a problem of the form of (1.1) but withn− 1
variables andm−1 constraints. Thus, a non-convex problem havingn variables and
m constraints is decomposed intom subproblems each havingn− 1 variables and
m−1 inequality constraints. Each of these is decomposed intom−1 subproblems
each havingn − 2 variables andm− 2 inequality constraints. A particular branch
of the method terminates when a convex subproblem is solved or when a one
dimensional subproblem is reached. The global minimum for the given problem
is obtained by choosing that minimizer for a convex subproblem which gives the
smallest objective function value for (1.1).

3. Reduction of the number of subproblems

When the Decomposition Method of Section 2 is applied to (1.1), the method
begins by invoking Procedure91(C) to construct two(n, n − 1) matricesD and
Q satisfying

C = 1

2
(DQ′ +QD′).

SuchD andQ are not uniquely determined and it is the purpose of this section to
formulate ways to constructD andQ so that the number of subproblems (2.1) is
reduced.

Let α1, . . . , αj be a subset of indices of constraints of (1.1) and in addition
suppose the gradients of these constraints, namelyaα1, . . . , aαj , are among the
columns ofD. Then in the statement of the Decomposition Method, each of the
matricesBα1, . . . , Bαj will be singular. Consequently subproblemsα1, . . . , αj will
be omitted. The following result gives a condition under which suchD andQ can
indeed be constructed.

THEOREM 3.1. LetM be any(n, n) nonsingular submatrix ofA. If (M−1)′CM−1

contains a(k, k) indefinite principal submatrix, then there exist two(n, n − 1)
matricesD andQ with rank(D)= n− 1 such that

C = 1

2
(DQ′ +QD′) (3.1)

and at leastn− k columns ofD are identical ton− k columns ofA′. Furthermore,
(1.1) can be decomposed into at most(m−n+ k) subproblems, each of dimension
n− 1 by using (3.1).
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Proof.Without loss of generality, assume thatM = [a1, . . . , an]′ and the(k, k)
indefinite principal submatrixE is that induced by the lastk rows and columns of
(M−1)′CM−1. Applying Procedure91 to E gives91(E) = (Dk,Qk), where the
dimensions of bothDk andQk are(k, k − 1), rank(Dk) = k − 1 and

E = 1

2
(DkQ

′
k +QkD

′
k).

Let

(M−1)′CM−1 =
[
F1 F2

F ′2 E

]
,

and define

D̂ =
[
In−k 0

0 Dk

]
and Q̂ =

[
F1 0
2F ′2 Qk

]
.

This implies

(M−1)′CM−1 = 1

2
(D̂Q̂′ + Q̂D̂′),

and thus

C = 1

2
(M ′D̂Q̂′M +M ′Q̂D̂′M) = 1

2
(DQ′ +QD′),

whereD = M ′D̂ andQ = M ′Q̂. Since rank(Dk) = k − 1, it follows that
rank(D̂) = n − 1. Therefore, rank(D) = rank(D̂) = n − 1 which completes the
verification of (3.1). SinceD = M ′D̂, the firstn−k columns ofD area1, . . . , an−k .
As in the statement of the Decomposition Method, the matricesB1, . . . , Bn−k will
each be singular and the(n− k) subproblems 1, . . . , n− k will be omitted. There-
fore, (1.1) can be decomposed into at most(m − n + k) subproblems, each of
dimensionn−1, by using the decomposition (3.1). This completes the proof of the
theorem. 2

The proof of Theorem 3.1 is constructive. For a given matrixM and a spe-
cified indefinite principal submatrixE of (M−1)′CM−1, the proof of Theorem 3.1
constructs matricesD andQ which satisfy the conclusions of Theorem 3.1. In
the proof, it is assumed thatE corresponds to the lastk rows and columns of
(M−1)′CM−1. A detailed procedure to constructD andQ whenE stems from
arbitrary rows and columns is given in the Appendix (Procedure93).

The following example will illustrate both the constructive procedure of the
proof of Theorem 3.1 and the conclusions of the theorem.

Example 3.1.
Consider Example 2.1 further. LetM = I3. Then the rows ofM are the gradients of
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the three upper bound constraints of the problem. Furthermore,(M−1)′CM−1 = C.
Note thatC contains the indefinite principal submatrix

E =
[ −1 −1
−1 5

]
,

which can be decomposed asE = 1
2[D2Q

′
2+Q2D

′
2] where

D2 =
[

1
(
√

6+ 1)

]
and Q2 =

[ −1
(
√

6− 1)

]
.

This gives

D = D̂ =
 1 0

0 1
0 (
√

6+ 1)

 and Q = Q̂ =
 2 0
−1 −1
9 (

√
6− 1)

 .
Applying the Decomposition Method with thisD andQ results in the two sub-
problems corresponding to the constraints 06 x1 6 1 being omitted. Although the
proof of Theorem 3.1 guarantees onlyn−k = 3−2 = 1 subproblem to be omitted,
two are omitted here because their associated gradients are linearly dependent. Two
of the remaining four are infeasible. Indeed, for the subproblem generated by the
constraintx2 = 0, the constraints are

06 t1 6 1,

06 t2 6 1+√6,

−1− 2
√

6− (10+√6)t1− 2
√

6t2√
6+ 1

> 0,

which are clearly infeasible. Similarly, the subproblem generated byx3 = 1 is also
infeasible.

Forx2 = 1 the subproblem is

minimize : −(11+ 2
√

6)t1− (1+ 2
√

6)t2+ 2(
√

6+ 1)t21 + 9t1t2 + (
√

6− 1)t22
subject to: 06 t1 6 1, 16 t2 6

√
6+ 2,

where the objective function has been multiplied by(
√

6+1) and the constant term
−(2√6+ 1) has been omitted for ease of presentation.

Forx3 = 0 the subproblem is

minimize : −t1− 2t2+ 2t21 − t1t2 − t22
subject to: 06 t1 6 1, 06 t2 6 1.
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Table 3.1.Optimal solutions for Example 3.1

Optimal Objective Point in Point in

type value E2 E3

Global −3.5 (0, 0.3(
√

6+ 1)+ 1)′ (0.5,1, 0)′
Local −3.45 (0.5, 1)′ (0,1, 0.3)′

Figure 3.1. Two-dimensional feasible regions for Example 3.1.

The first subproblem has two local minimizers:(0,0.3(
√

6 + 1)+
1)′ and(0.5,1)′. The second subproblem has just one:(0.5,1)′. Thus(0.5,1)′ and
(0,0.3(

√
6+ 1) + 1)′ are two local minimizers for the two-dimensional problem.

The corresponding points in the original space are(0.5,1,0)′ and(0,1,0.3)′, re-
spectively, and these are local minima for the given problem, in agreement with
Example 2.1. These points are summarized in Table 3.1 and the geometry of the
two subproblems is shown in Figure 3.1.

There is considerable flexibility in how Theorem 3.1 may be used. First, an
(n, n) submatrix ofAmust be chosen. Second, a(k, k) indefinite principal submat-
rix of (M−1)′CM−1 must be found. According to Theorem 3.1 the maximum sub-
problem reduction occurs whenk = 2. One possibility is to enumerate each(2,2)
or (3,3) principal submatrix and check for indefiniteness. For such small principal
submatrices, this will not require much computational effort. However, dealing
with much larger principal submatrices could require excessive computation.

The following proposition shows that we can guarantee to omit a certain number
of subproblems, but that number can be quite small.

PROPOSITION 3.1.AssumeC hask1 positive eigenvalues andk2 negative eigen-
values. Then for any nonsingular(n, n) submatrixM of A, each(n − ρ, n − ρ)
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principal submatrix of(M−1)′CM−1 will be indefinite or singular, whereρ =min
{k1, k2} − 1.

Proof.SinceC hask1 positive eigenvalues andk2 negative eigenvalues, so also
does(M−1)′CM−1. Let

(M−1)′CM−1 =
[
F1 F2

F ′2 B

]
,

whereB is a(n− ρ, n− ρ) submatrix,F1 a (ρ, ρ) submatrix andF2 a (ρ, n− ρ)
submatrix. It is sufficient to show thatB is indefinite or singular. Suppose to the
contrary thatB is positive definite or negative definite. ThenB is invertible. Hence[

I −F2B
−1

0 B−1

] [
F1 F2

F ′2 B

][
I 0

−B−1F ′2 B−1

]
=
[
F1 − F2B

−1F ′2 0
0 B−1

]
.

Assume first thatB is positive definite. This implies(n − ρ) 6 k1 and thus
ρ > n − k1 = k2. This contradicts the definition ofρ. Consequently,B is not
positive definite. Similarly, the assumption thatB is negative definite leads to the
contradiction thatρ > k1. Consequently,B is either indefinite or singular. 2
4. Conclusions

Given an indefinite QP withn variables,m linear constraints and a bounded feasible
region, we have formulated a Decomposition Method which produces at mostm

QP subproblems, each of dimensionn− 1. The global minimum, all isolated local
minima and some of the non-isolated local minima for the given problem can be
obtained from the local minima of the smaller dimensional problems. Each of the
(n− 1)–dimensional problems can be decomposed in a similar manner and so on,
until one-dimensional problems are obtained and these can be solved directly.

The method of generating the lower dimensional subproblems is not unique
and we have presented a method which can be used to reduce the number of
subproblems.

The Decomposition Method and the technique for reducing subproblems are
illustrated with small numerical examples.

Appendices

Here we present the technical details of Procedure91 required by the Decom-
position Method, Procedure92 (a conjugate direction procedure) which is used
by Procedure91, and Procedure93 which is used in reducing the number of
subproblems for the Decomposition Method.

Appendix A. Procedure91 (C)

Given an(n, n) symmetric matrixC, Procedure91(C) determines whether or not
C is indefinite, positive semi-definite or negative semi-definite. IfC is indefinite,
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Procedure91(C) constructs two(n, n−1)matricesD andQ with rank(D) = n−1
and rank(Q)= rank(C)− 1, and which satisfyC = 1

2[DQ′ +QD′]. In this case,
we write91(C) = (Q,D). The details of Procedure91(C) are as follows.

We first require an(n, n) non-singular matrixM and an(n, n) diagonal matrix
3 satisfyingM ′CM = 3, where the diagonal elements of3 are all either−1,
0 or +1. Such matrices may be found by either performing an eigenvalue de-
composition forC or by using a modified conjugate direction method described
in Subsection Appendix B. The latter method is important because it requires
only O(n3) arithmetic operations. It is straightforward to show that the diagonal
elements of3 are all nonnegative if and only ifC is positive semi-definite, and
are all non-positive if and only ifC is negative semi-definite. In either of these
cases, Procedure91(C) terminates with the relevant information. The remaining
possibility is that3 has two nonzero diagonal elements of opposite sign and this
is equivalent toC being indefinite. In this case, Procedure91(C) continues as
follows.

Supposek andl are such thatλk andλl are both nonzero, have opposite signs,
and assumek < l. Thenλk+λl = 0. Letei denote thei-th unit vector of dimension
n− 1. If l < n, defineD̂ andQ̂ according to

D̂′ = [ e1, . . . , el−1, ek, el, el+1, . . . , en−1 ], and Q̂′ = D̂′3.

If l = n, define

D̂′ = [e1, . . . , el−1, ek], and Q̂′ = D̂′3.

Note thatD̂′ differs from the(n − 1, n − 1) identity matrix by the insertion ofek
after columnl − 1. It is straightforward to show that̂DQ̂′ differs from3 only in
the(k, l)th and(l, k)th elements which are

(D̂Q̂′)kl = λl and (D̂Q̂′)lk = λk.

But thenλk + λl = 0 implies

3 = 1

2
[D̂Q̂′ + Q̂D̂′].

Thus

C = (M ′)−13M−1 = 1

2
[(M ′)−1D̂Q̂′M−1+ (M ′)−1Q̂D̂′M−1]

and thus

D = (M ′)−1D̂ and Q = (M ′)−1Q̂

satisfy the conditions of Procedure91. The procedure is then complete with
91(C) = (Q,D).
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Appendix B. Procedure92 (C): a conjugate direction procedure

Conjugate directions are used in quadratic and nonlinear programming, usually in
the context of a positive definite Hessian. The basic ideas are as follows. LetC and
M be (n, n) matrices withC being symmetric and positive definite. The columns
of M are (normalized) conjugate directions ifM ′CM = In. There are many ways
to construct conjugate directions. We shall generalize the method developed in [3]
for the case of indefiniteC. The resulting matrixM will have the property that
M ′CM is diagonal and the diagonal entries are either 1,0 or−1.

Let k be such that 16 k 6 n. Let

D′ = [Cc1, Cc2, . . . , Cck−1, dk, . . . , dn] (B.1)

and suppose

D−1 = [β1c1, β2c2, . . . , βk−1ck−1, ck, . . . , cn], (B.2)

whereβi = sign(c′iCci) for i = 1, . . . , k − 1 and for any scalarθ

sign(θ) =
{

1, if θ > 0,
−1, if θ < 0.

The process begins withk = 1 andD is any non-singular matrix (e.g., the identity
matrix). By definition of the inverse matrix, for alli, j with 16 i, j 6 k − 1

c′iCcj =
 0, if i 6= j,

1, if i = j and sign(c′iCcj ) = 1,
−1, if i = j and sign(c′iCcj ) = −1.

(B.3)

DefiningM = [c1, c2 . . . , cn] it follows from (B.3) thatM ′CM has a(k−1, k−1)
block diagonal submatrix in the top left corner whose diagonal entries are either 1
or−1.

We next show an updating procedure which will produce a newD andM hav-
ing the same structure but withk − 1 replaced byk. There are three cases to be
considered.

Case 1.c′kCck 6= 0.

For ease of notation, letγk = (|c′kCck|)− 1
2 . Suppose we obtain a new matrix̂D′

fromD′ by replacingdk with

d = γkCck. (B.4)

Letting

D̂−1 = [ĉ1, . . . , ĉn], (B.5)

it follows from the Sherman–Morrison formula [6], (see also [2]) that

ĉi = βici − d ′ci
d ′ck ck, i = 1, . . . , k − 1,

ĉk = 1
d ′ck ck,

ĉi = ci − d ′ci
d ′ck ck, i = k + 1, . . . , n.

 (B.6)
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From (B.1), (B.2) and the definition of the inverse matrix we have

d ′ci = γkc′kCci = 0, i = 1, . . . , k − 1. (B.7)

Thus, from (B.6)

ĉi = ci, i = 1, . . . , k − 1, (B.8)

i.e., the firstk−1 columns ofD̂−1 are unchanged by the update. Furthermore, from
(B.6) and (B.4)

ĉk = γ −1
k

c′kCck
ck = sign(c′kCck)γkck = βk(γkck), (B.9)

whereβk = sign(c′kCck)Summarizing (B.4), (B.5), (B.7) and (B.9) we have shown

D̂′ = [Cc1, . . . , Cck−1, C(γkck), dk+1, . . . , dn]
D̂−1 = [β1c1, . . . , βk−1ck−1, βk(γkck), ĉk+1, . . . , ĉn].

whereβk = sign(c′kCck). ThusD̂′ andD̂−1 are of precisely the same form asD′
andD−1, respectively, only withk − 1 replaced withk.

Case 2.c′kCck = 0 and Cck = 0.
In this case,ck is in the null space ofC and no update need be performed. Fur-
thermore, it follows from (B.6) thatck will remain unchanged by further updates
corresponding to Case 1.

Case 3.c′kCck = 0 and Cck 6= 0.
First, we argue that there is aj > k with

c′kCcj 6= 0. (B.10)

For if not, by definition of the inverse matrix,c′kCci = 0 for i = 1, . . . , k − 1 ,
c′kCck = 0 by the assumption of Case 3 andc′kCci = 0 for i = k + 1, . . . , n as in
the present assumption. ThusCck is orthogonal ton linearly independent vectors
and must be the zero vector. But this is in contradiction to the assumption of Case 3.
Consequently, there is aj > k− 1 satisfying (B.10). Suppose next that we modify
D′ andD−1 by replacingck with ck + cj anddj with dj − dk. Then the modified
D′ andD−1 still satisfy (B.1) and (B.2). Furthermore,

(ck + cj )′C(ck + cj ) = 2c′jCck 6= 0

and now Case 1 applies to the modified matrices.
Note thatD−1 is not required for any computations and is only used for expos-

itory reasons. We next give a detailed statement of the algorithm.

Procedure92 (C )
Start withD−1 = In = [c1, . . . , cn] and fork = 1, . . . , n, do the following.
LetD−1 = [β1c1, β2c2, . . . , βk−1ck−1, ck, . . . , cn].
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Step 1.If c′kCck 6= 0, setγk = (|c′kCck|)− 1
2 , βk = sign(c′kCck), andd = γkCck and

computeD̂−1 = [ĉ1, . . . , ĉn] where

ĉi = ci, i = 1, . . . , k − 1
ĉk = βkγkck,
ĉi = ci − d ′ci

d ′ck ck, i = k + 1, . . . , n.

ReplaceD−1 with D̂−1 and continue.

Step 2.If c′kCck = 0 andCck = 0, setβk = 1, leaveD−1 unchanged and continue.

Step 3.If c′kCck = 0, andCck 6= 0, determinej > k such thatc′kCcj 6= 0, modify
D−1 by replacingck with ck + cj and return to Step (1) with the modifiedD−1.

The properties of the conjugate direction method are summarized in

PROPOSITION B.1. Let the conjugate direction method be applied to the sym-
metric matrixC and letD−1 = [β1c1, . . . , βncn] be the final matrix so obtained.
LetM = [c1, . . . , cn]. ThenM ′CM = 3, where3 is a diagonal matrix with all
diagonal entries being either−1, 0 or +1. The number of arithmetic operations
required by it isO(n3).

EXAMPLE 4.1. We illustrate Procedure92 by applying it to

C =
[

0 1
1 0

]
.

In Step 1,c′1Cc1 = 0 and Cc1 = (0,1)′ 6= 0 so we go to Step 3 to determinej = 2
with c′1Cc2 = 1 and replaceD−1 = I2 with

D−1 =
[

1 0
1 1

]
.

We now return to Step 1 and determinec′1Cc1 = 2, γ1 = 1/
√

2, d = 1/
√

2(1,1)′,
β1 = 1, and,

D−1 =
[

1√
2
−1

2
1√
2

1
2

]
.

Returning to Step 1 fork = 2 we computec′2Cc2 = −1
2, γ2 =

√
2, d =

1/
√

2(1,−1)′, β2 = −1 and

D−1 = 1√
2

[
1 1
1 −1

]
.



150 M.J. BEST AND B. DING

From this we obtain

M = 1√
2

[
1 −1
1 1

]
,

and computeM ′CM = diag(1,−1).

Appendix C. Procedure93 (C, M, J, k)

Theorem 3.1 provides a constructive procedure to obtain matricesD andQ sat-
isfying (3.1) for the case that(M−1)′CM−1 contains a(k, k) indefinite principal
submatrix induced by the lastk rows and columns of(M−1)′CM−1. The purpose
of this section is to generalize the construction to the case where(M−1)′CM−1 has
an indefinite principal submatrix in a general position. We refer to this as Procedure
93.

Procedure93 (C, M, J, k)
Let C be an(n, n) symmetric matrix andM be an(n, n) nonsingular matrix such
that (M−1)′CM−1 contains a(k, k) indefinite principal submatrixE. Let J =
{γ1, γ2, . . . , γk} be an ordered index set specifyingE; i.e.,

(E)ij = ((M−1)′CM−1)γiγj , 16 i, j 6 k,

and assumeγ1 < γ2 < . . . < γk. Given the input dataC, M, J andk, Procedure
93(C,M, J, k) constructs two matricesD andQ such thatC = 1

2[DQ′ +QD′],
rank(D) = n − 1 and at leastn − k columns ofD are identical ton − k columns
of M ′. The details of Procedure93(C,M, J, k) are as follows.

By invoking Procedure91(E), we obtain two(k, k − 1) matricesDk andQk

such that

E = 1

2
(DkQ

′
k +QkD

′
k).

LetDk = (d̄µν),Qk = (q̄µν),K = {1, . . . , k} and(M−1)′CM−1 = (fij ). We next
construct matriceŝD = (d̂ij ) andQ̂ = (q̂ij ) according to

d̂ij =


1 if i = j, i 6∈ J, i < γk,
1 if i = j + 1, i > γk,
d̄µν if j < γk, i = γµ, j = γν for someµ, ν ∈ K,
0 otherwise,
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and

q̂ij =



fij if i, j 6∈ J, j < γk,

2fij if j 6∈ J, i ∈ J, j < γk,
2fi(j+1) if i ∈ J, j > γk,
fi(j+1) if i 6∈ J, j > γk,
q̄µν if j < γk, i = γµ, j = γµ for someµ, ν ∈ K,
0 otherwise.

SettingD = M ′D̂ andQ = M ′Q̂ completes the construction.
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