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Abstract. We present a decomposition method for indefinite quadratic programming problems
havingn variables andn linear constraints. The given problem is decomposed into at md3P
subproblems each having linear constraints and — 1 variables. All global minima, all isolated

local minima and some of the non-isolated local minima for the given problem are obtained from
those of the lower dimensional subproblems. One way to continue solving the given problem is to
apply the decomposition method again to the subproblems and repeatedly doing so until subproblems
of dimension 1 are produced and these can be solved directly. A technique to reduce the potentially
large number of subproblems is formulated.
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gramming.

1. Introduction
We propose a method to solve
min{c’x + x'Cx | Ax < b}, (1.1)

whereC is (n, n), symmetric and indefinite; andx aren-vectors,A is an(m, n)
matrix andb is anm-vector. Matrix transposition is denoted by a primjeafnd all
non-primed vectors will be assumed to be column vectyraill denote the(n, n)
identity matrix and E will denote Euclideam-space. Let

S = {x| Ax < b}

denote the feasible region for (1.1). When it is necessary to discuss the individual
constraints for (1.1), we will write§ in the form

S ={xlax < b,i=1...,m}

so thata; denotes théth row of A.
We require the following to be satisfied throughout this paper.

* This research was supported by the National Sciences and Engineering Research Council of
Canada under Grant A8189.
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ASSUMPTION 1.1. (a) S # @, and (b)S is bounded.

The primary difficulty in solving (1.1) is that it may possess many local min-
imizers. We address this difficulty by utilizing results from our previous paper [4],
which we briefly summarize here. In [4], parametric quadratic programming is
used to find all isolated local minimizers and some non-isolated local minimizers
for the non-convex QP

min{c’x +x'DQ'x | Ax < b} (1.2

wherec, A, b andx are as in (1.1), an@d and Q are(n, k) matrices withk < n.
The method proceeds by formulating the parametric LP

min{c’x + 1 Q'x | Ax < b, D'x =t}, (1.3)

wherer is a parameter vector in‘ELetting R(7) denote the set of feasible solutions
for (1.3), the derived problem for (1.2) is

min{ f (1) | t € E*}, (1.4)
where
_min{c'x +1Q'x | x € R(t)}, if R(t) # ¢,
S0 = { 400, otherwise (1.5

It is shown in [4] that the isolated local minimizers of (1.2) and (1.4) are in one
to one correspondence. In particulartfifis a local minimizer for (1.4) then any
optimal solution for (1.3) withr = #* is a local minimizer for (1.2).

Although the theory was developed for arbitréry n, the numerical proced-
ures developed in [4] were limited to the case&ef 1 in which case (1.3) has just
a single parameter and can be solved using the methods in [1]. In this paper, we
address the problem &f = n — 1 by using a decomposition approach. We begin
with the model problem (1.1). We then give a method which will either construct
matricesD and Q satisfyingx’D Q’x = x’Cx (so that the model problem (1.1) can
be rewritten in the model form (1.2)), or, determine that no such matficaisd O
exist.

When suchD and Q do indeed exist, the decomposition method then generates
m subproblems each of dimensian— 1, wherem is the number of constraints
in (1.1). Combining the local/global solutions of all of thesesubproblems gives
the local minima and the global minimum for the given problem. Each of these
smaller problems is in turn decomposed intsubproblems with their dimension
reduced by 1. The process continues by generating smaller and smaller dimensional
subproblems until the subproblem can be solved directly. One possibility is a one-
dimensional subproblem. Other possibilities will be discussed.

For the case that no sudh and Q exist, we will show that eithe€ is positive
semi-definite or negative semi-definite. In the former case, (1.1) is a convex quad-
ratic programming problem and may be solved by any convex QP algorithm. In
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the latter case, (1.1) is a concave quadratic minimization problem. This is a very
difficult problem and we have no suggestions as to how it may be solved.

We will give numerical examples to illustrate both the decomposition method
and the subproblem reduction procedure.

2. A Decomposition Method

Here we present a decomposition method for (1.1). We will begin with a detailed
statement of the method and then establish its properties in Theorem 2.1. We will
give an example of applying the method to a small numerical problem. The method
requires thatC be expressed in a different form. This is performed by Procedure
W; which is developed in detail in the Appendix.

2.1. DECOMPOSITION METHOD

Use Procedur&; (C) to obtain matriceg) and D, each having dimensioris, n —

1) and satisfyingC = 3[DQ’ + @D'] and rank(D)= n — 1. Then fork =
1,2,...,m construct and solve the following subproblems. Defing(the) mat-

rix B, = [D, ax]. If By is singular, thekth subproblem is considered vacuous. If
By is nonsingular, partitiorB, * as B, * = [H;, di], whereH, is (n, n — 1) anddj

is the last column oB, 1. Thekth subproblem is then to find all local minimizers
for then — 1 dimensional problem in

minimize: byc'dy + (Hjc + b Q'dy)'t + t'H.CHyt
subjectto: a;Hyt < b —bialdy, i=1...,m, i #k, (2.1)
and d 0t < —c'd.

For thekth subproblem, lep, denote the number of local minimizers so obtained,
let these local minimizers be denotedspyi = 1,... , pr and letR,(¢) denote the
feasible region for (2.1). Far=1, ..., px, xx;i = Hity; + bid, is alocal minimum
for (1.1), providedy,; is also a local minimizer for all subproblenyssuch that

i € R;. A global minimizer for (1.1) is then the local minimizer which gives the
best objective function value.

In the following theorem, we formulate the properties of the Decomposition
Method. The proof of the theorem is constructive and gives insight into the method.

THEOREM 2.1. Let Assumption 1.1 be satisfied, assuthis indefinite and that
the Decomposition Method is applied to (1.1). Then the method determines all
global minimizers, all of the isolated local minimizers and some of the non-isolated
local minimizers for (1.1).

Proof. BecauseC is indefinite, Procedur@,(C) produces two matrice® and
Q, each of dimensiofn, n—1) and with rankD) = n—1. Thus, (1.1) is equivalent
to (1.2) withk = n — 1. The parametric LP corresponding to (1.3) is then

min{c’x + ¢'Q'x | D'x = t, ajx < b, i=1,...,m}, (2.2)
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wheretr has dimensiom — 1. Because of Assumption 1.1(a), the feasible region
for (2.2) is non-null for certairs. Furthermore, from Assumption 1.1(b), there is
an optimal solution of (2.2) which is an extreme point forzdibr which (2.2) has
a feasible solution. Because ra@ik = n — 1, there are at most extreme points
for (2.2) each corresponding to tlie — 1) equality constraints of (2.2) plus one
of the m inequality constraints. Consider th¢h possibility. LetB, be as in the
statement of the Decomposition Method Bl is singular, then théth inequality
constraint does not give rise to an extreme point andthesubproblem need not
be considered further.

Otherwise, the extreme point = x(¢) is the solution of the: simultaneous
linear equations

D'x(t) =t, ax(t) = by.

Letting H, andd, be as in the statement of the Decomposition Procedure, it follows
that

x(t) = Hyt + bydy (23)

is optimal for (2.2) for alls such thatx(¢) satisfies primal and dual feasibility for
(2.2). Primal feasibility is accounted for by substituting) into the remaining
constraints of (2.2). This gives

a;Hkt < b —bka;dk, i=1... ., m, i ;ék (24)

Since the first(n — 1) constraints of (2.2) are equality constraints, their dual
variables are unconstrained in sign. T’k inequality constraint is active aiz)
and its dual variable, namely(c+ Qr)'d,, must be non-negative. This requirement
reduces to

dor < —ddy. (2.5)

Observe that the set of all satisfying (2.4) and (2.5) is precisel(¢) in the
statement of the Decomposition Method. Thus, we have shown thagiven by
(2.3) is optimal for (2.2) for alt € R (¢).
We next use (2.3) to express the optimal objective function value for (2.2), call
it Fy (1), explicitly in terms oft:
F.(t) = 'x + t’Q’x = bicddy + (H]éC + ka/dk)/t + I/Q/Hkt.

The quadratic term can be simplified somewhat. First observe that by \Mﬁ,ﬂﬂgl =
I, in terms of its partitions, it follows that

D'H, =1, ;. (2.6)
Next, because = QD' + D(Q/, it follows from (2.6) that
2CH, = QOD'H, + DQ'H,
= 0 + D(Q'Hy).
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Multiplying on the left byH, gives
1
H{CHy = SIH;Q + Q'Hyl,
which shows that
F.(t) = bkc/dk + (HIQC + ka/dk)/l + I/HIQCH/{I (2.7)

The equivalent of (1.5) for (1.1) can now be expressed as

Fi(®), ifte Ri(d),

£ = .17.2.(1), lfl € Ro(1), (2.8)
F,@®), ifteR,®).
Note that the problem
MIin{Fi(t) | t € Ry(2)} (2.9)

is precisely thekth subproblem of the Decomposition Method. Let,

i = 1,..., p. be the local minimizers for (2.1) as in the statement of the
Decomposition Method. Then these are also local minimizers for (2.9). If fgr all
such thaty; € R;(¢), t,; is also a local minimizer for

min{F;(t) |t € R; (1)},
thenr; is a local minimizer for the problem
min{f () | t € E'1},

where f(¢) is defined by (2.8). It now follows from Theorem 2.4 of [4] that =
Hity; + bid, is a local minimizer for (1.1) and this completes the proof. O

The Decomposition Method can be used to solve (1.1) as follows. Assuthing
is indefinite, applying the Decomposition Method to (1.1) produwessibproblems
each havingn linear inequality constraints amd— 1 variables. Each of these sub-
problems will be either convex, indefinite or concave and the relevant possibility
may be determined by invoking Proceduke. In the convex case, the subproblem
may be solved by using any convex QP algorithm (eg [3] ). For the indefinite case,
the Decomposition Method may again be applied to produdarther subprob-
lems each having dimension— 2. For the concave case, an appropriate solution
method must be utilized. Assuming the indefinite case applies to each subproblem,
eventually one dimensional subproblems will be produced and these can be solved
directly. The structure of this method is that of a tree. The top of the tree is (1.1).
Beneath it aren subproblems each having dimensior- 1. Beneath each — 1
dimensional subproblem are additional subproblems each of dimensior- 2.
At the bottom of the tree are the one-dimensional subproblems.
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An obvious difficulty of this approach is that the number of subproblems will
be exponentially large. However, in Section 3 we will show that performing the
decomposition in a particular way will result in the number of subproblems being
reduced. The matrice® and Q are not uniquely determined and by constructing
them in a particular way, the subproblems may be reduced in number to between 1
andm.

Thereom 2.1 states that the Decomposition Method will determine all global
minimizers, all isolated local minimizers asgmeof the non-isolated local min-
imizers for (1.1). That notll are necessarily obtained is a consequence of the
underlying parametric method being used. See [4] for examples and discussion.

We illustrate the Decomposition Method and the tree of subproblems in

EXAMPLE 2.1.
minimize: —x1 — 2x; —x3 + x'Cx
subjectto: 0 < x; < 1, i=123
where
2 -05 45
C = —-0.5 -1 -1 = [DQ' + QD']/2,
45 -1 5
and for simplicity we take
10 2 1
D=|-11 and 9 = |0 -1
3 2 1 1

There are six inequality constraints in the problem. Each generates a subprob-
lem with two variables. The objective function (with the constant omitted) and
constraints for each subproblem defined by (2.1) are summarized in Table 2.1. As
well, the feasible regions for the subproblems are shown together in Figure 2.1.

In this example, each of the six subproblems has exactly five constraints rather
than the six one might expect. This is because, for example, when0 is active,
its gradient is linearly dependent on thatwf< 1 and so produces a constraint of
the form 0< 1.

Each of the six two-dimensional problems is non-convex and can be decom-
posed into at most five one-dimensional problems. Each such one-dimensional
problem can be viewed as minimizing a piece wise quadratic function over at most
five intervals. In each interval, the quadratic objective function may be strictly con-
vex, strictly concave or linear. It is a straightforward matter to determine the local
minima for the one-dimensional case. We omit the details of these calculations.
However, a typical one-dimensional piecewise function is illustrated in Figure 2.2.

An alternative way to proceed for this example is to note that the Hessian
matrices for each of the six two-dimensional subproblems all have exactly one neg-
ative eigenvalue. Each of these six subproblems could be solved using the method
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Table 2.1. Two-dimensional subproblems for Example 2.1

Active 'X’ Objective function Constraints
constraint

0<+16<5
22+ A — 22 + 31 — Trp) 0< -2 +3p <5,
91 +2tr>8

I
o

X1

1< +1rn<6,
x1 =1 %(tlz + A4ty — 2102 + 120 — 510 —8)  —2< =211 + 31 < 3,
91+ 2t <8

0<n<2
x2 =0 %(4t12—3t1t2—2tzz—211+21‘2) 0<2n -3 <2,
91 +2t>8

1<n<3,
xp =1 3@4n?-3n1p— 27+ T+ 4, -8 -5< 21 -3 < -3,
91+ 2> <8

0<rn+1rn<l,
x3 =0 21‘12+3[1[2—tl—3t2 0<m<l,
91 +2tp <8

2<1p <3
x3 =1 2112 + 3t1tp — 10 — 519 + 8 5< 11 +1<6,
91 +2t>8

0 Y T T T
-1 0 1 2 3 4

Figure 2.1. Two-dimensional feasible regions for Example 2.1.

3]
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T T T T 4

Figure 2.2. Typical piecewise function for one-dimensional subproblem.

Table 2.2.Optimal solutions for Example 2.1 and some variations

Linear Optimal  Objective  Pointin Point in
term type value E E3
—x1 — 2xp — X3 Global —35 (=05, 1Y (0.5,1,0/
Local —345 (-0.1,16) (0,1,0.3/
—x1+ 2x0 — x3 Global —-0.125 (0.25,0) (0.25,0, 0)/
Local 055 (-0.1,1.6) (0,1,0.3/
Local 05 (=05, 1/ (0.5,1,0/
—0.5x1 + 2xp —x3  Global —0.05 (0.3,0.2/ (0,0,0.1)
Local 055 (-0,1,1.6) (0,1,0.3/
Local —0.03125 (0.125) (0.125,0, 0

Local 071875 (-0.625,1) (0.375,1,0)

of [4]. For problems with large numbers of constraints, this is a computationally
more attractive way to proceed.

Local minima for the two-dimensional problem are indicated in Figure 2.1. The
four points indicated by a cross within a circl®)) are local minima for at least
one, but not all the regions in which they lie and thus do not give local minima for
the three-dimensional problem. The two points indicated by a bul)edre local
minima for all the regions in which they lie and thus give local minima for the
original problem.

The local and global minimizers for Example 2.1 are shown in Table 2.2. Also
shown are the local and global solutions for two variations of Example 2.1. These
variations are obtained by changing the linear part of the objective function for
Example 2.1.

Murty [5] proposes a method to find a global minimum for (1.1). Although his
method does not find local minima as does ours, the tree structure of subproblems
for his method is analogous to ours. Murty first checks to se€ ih (1.1) is
positive semi-definite and if so, solves the problem using conventional convex QP
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algorithms, as do we. Otherwise, for= 1, ... , m the following subproblems are
considered:
min{c’x + x'Cx |ax <b;, i=1...,m, i #k, ax = b}.

Each of thesen subproblems are considered separately. Each such subproblem
includes precisely one equality constraint. This can be used to express one of
the variables as an affine function of the remaining variables. Consequently, each
subproblem may be reformulated as a problem of the form of (1.1) butawvitii
variables ana: —1 constraints. Thus, a non-convex problem havimgriables and

m constraints is decomposed intosubproblems each havimg— 1 variables and

m — 1 inequality constraints. Each of these is decomposednntdl subproblems

each having: — 2 variables ana: — 2 inequality constraints. A particular branch

of the method terminates when a convex subproblem is solved or when a one
dimensional subproblem is reached. The global minimum for the given problem
is obtained by choosing that minimizer for a convex subproblem which gives the
smallest objective function value for (1.1).

3. Reduction of the number of subproblems

When the Decomposition Method of Section 2 is applied to (1.1), the method
begins by invoking Procedun&,(C) to construct twan, n — 1) matricesD and

Q satisfying
C = %(DQHLQD’).

SuchD and Q are not uniquely determined and it is the purpose of this section to
formulate ways to construdd and Q so that the number of subproblems (2.1) is
reduced.

Let oy, ..., a; be a subset of indices of constraints of (1.1) and in addition
suppose the gradients of these constraints, namgly. .. , a,;, are among the
columns ofD. Then in the statement of the Decomposition Method, each of the
matricesB,,, ... , By, will be singular. Consequently subproblems. .. , «; will
be omitted. The following result gives a condition under which sichnd Q can
indeed be constructed.

THEOREM 3.1. Let M be any(n, n) nonsingular submatrix oA. If (M~1)’CM
contains a(k, k) indefinite principal submatrix, then there exist two, n — 1)
matricesD and Q with rank(D) = n — 1 such that

C= %(DQ/ +0D) (3.1)

and at leasiz — k columns ofD are identical ton — k columns ofA’. Furthermore,
(1.1) can be decomposed into at m@st— n + k) subproblems, each of dimension
n — 1 by using (3.1).
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Proof. Without loss of generality, assume thidt= [a, ... , a,]" and the(k, k)
indefinite principal submatrix is that induced by the lagtrows and columns of
(M~YcM~*. Applying Procedurel, to E givesW1(E) = (Dy, Qx), Where the
dimensions of bottD, andQ, are(k, k — 1), rankD;) = k — 1 and

1 /
E = E(DkQ;‘ + O«D)).

Let
-1 | F1 P2
o= ).
and define
~ | L« O ~ | F1 0
=[5 5] e o=[2 8]
This implies

N 1 1 N A A
(M7 CM™ = S(DQ'+ 0D,
and thus
1 'NA AT 1 1 1
C:E(MDQM—I—MQDM)ZE(DQ + 0D,

whereD = M’D and Q0 = M’Q. Since rank(p) = k — 1, it follows that
rank@®) = n — 1. Therefore, rankD) = rank(D) = n — 1 which completes the
verification of (3.1). Sincé® = M'D, the firsta—k columns ofD areay, ... , a,_.

As in the statement of the Decomposition Method, the maties. . , B, will

each be singular and thie — k) subproblems 1 .. , n — k will be omitted. There-
fore, (1.1) can be decomposed into at mest— n + k) subproblems, each of
dimensiom — 1, by using the decomposition (3.1). This completes the proof of the
theorem. O

The proof of Theorem 3.1 is constructive. For a given malfixand a spe-
cified indefinite principal submatrig of (M~1)'CM~1, the proof of Theorem 3.1
constructs matrice® and Q which satisfy the conclusions of Theorem 3.1. In
the proof, it is assumed thdi corresponds to the lait rows and columns of
(M~YYCcM~*. A detailed procedure to construt and Q when E stems from
arbitrary rows and columns is given in the Appendix (Procediye

The following example will illustrate both the constructive procedure of the
proof of Theorem 3.1 and the conclusions of the theorem.

Example 3.1.
Consider Example 2.1 further. L&f = I5. Then the rows oM are the gradients of
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the three upper bound constraints of the problem. Furtherraeel)y CM 1 = C.
Note thatC contains the indefinite principal submatrix

-1 -1
=[5

which can be decomposed Bs= %[DZQ’2 + Q.D5] where

This gives

1 0 2 0
D=D=|0 1 and 0=0=| -1 -1 .
0 (V6+1) 9 (6-1

Applying the Decomposition Method with thi® and Q results in the two sub-
problems corresponding to the constraints @; < 1 being omitted. Although the

proof of Theorem 3.1 guarantees only-k = 3—2 = 1 subproblem to be omitted,

two are omitted here because their associated gradients are linearly dependent. Two
of the remaining four are infeasible. Indeed, for the subproblem generated by the
constraintx, = 0, the constraints are

0<n<l
0<1n<1+V6,

—1— 26— (10+ /6)t; — 261,
V6+1
which are clearly infeasible. Similarly, the subproblem generateds by 1 is also

infeasible.
Forx, = 1 the subproblem is

=0,

minimize: —(11+ 2V8)t1 — (1 + 2V6)12 + 2(v/6 + 112 + 911 + (V6 — )12
subjectto: 0<1n <1, 1<6H<V/6+2

where the objective function has been multipliedk{6+ 1) and the constant term
—(2+/6 + 1) has been omitted for ease of presentation.
For x3 = 0 the subproblem is

minimize: —t; — 2t + 2t2 — ity — 2
subjectto: 0<n <1, 0<Hp<<Ll
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Table 3.1.Optimal solutions for Example 3.1

Optimal Objective  Pointin Pointin
type  value E E3
Global —35 (0,03v/6+1) +1) (051,0/
Local —3.45 0.5, 1) (0,1,0.3/
t2
A
V6+2 —
4 -
3 Tg = 1
03(v6+1)+1 \
2 -9
1 °
3= 0
0 T —- 1)
0.0 05 1.0

Figure 3.1. Two-dimensional feasible regions for Example 3.1.

The first subproblem has two local minimizers0, 0.3(v6 + 1)+
1) and(0.5, 1)’. The second subproblem has just of@5, 1)’. Thus(0.5, 1)’ and
(0, 0.3(v/6 + 1) + 1)’ are two local minimizers for the two-dimensional problem.
The corresponding points in the original space &=, 1, 0)’ and (0, 1, 0.3)’, re-
spectively, and these are local minima for the given problem, in agreement with
Example 2.1. These points are summarized in Table 3.1 and the geometry of the
two subproblems is shown in Figure 3.1.

There is considerable flexibility in how Theorem 3.1 may be used. First, an
(n, n) submatrix ofA must be chosen. Secondia k) indefinite principal submat-
rix of (M~1)'C M~—* must be found. According to Theorem 3.1 the maximum sub-
problem reduction occurs whén= 2. One possibility is to enumerate ea@)2)
or (3, 3) principal submatrix and check for indefiniteness. For such small principal
submatrices, this will not require much computational effort. However, dealing
with much larger principal submatrices could require excessive computation.

The following proposition shows that we can guarantee to omit a certain number
of subproblems, but that number can be quite small.

PROPOSITION 3.1.Assume&” hask; positive eigenvalues arig negative eigen-
values. Then for any nonsingul&r, n) submatrixM of A, each(n — p,n — p)
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principal submatrix of M ~1)’C M~ will be indefinite or singular, wherg = min
{k1, ko} — 1.
Proof. SinceC hask; positive eigenvalues arig negative eigenvalues, so also
does(M~YyYCcM~1. Let
F, F
—1y/ -1 _ 1 2
e =[5 ).
whereB isa(n — p, n — p) submatrix,F; a(p, p) submatrix andr, a(p, n — p)
submatrix. It is sufficient to show tha is indefinite or singular. Suppose to the
contrary thatB is positive definite or negative definite. Th8ris invertible. Hence

I -FRB Y[R F I 0] [FA—FB', O
0o B! F, B ||-B'F; Bt|™ 0 Bt |

Assume first thatB is positive definite. This impliesn — p) < k; and thus
o = n — ki = kp. This contradicts the definition gf. ConsequentlyB is not
positive definite. Similarly, the assumption thatis negative definite leads to the
contradiction thap > k;. ConsequentlyB is either indefinite or singular. a

4. Conclusions

Given an indefinite QP with variables linear constraints and a bounded feasible
region, we have formulated a Decomposition Method which produces atnmost
QP subproblems, each of dimensior- 1. The global minimum, all isolated local
minima and some of the non-isolated local minima for the given problem can be
obtained from the local minima of the smaller dimensional problems. Each of the
(n — 1)—dimensional problems can be decomposed in a similar manner and so on,
until one-dimensional problems are obtained and these can be solved directly.

The method of generating the lower dimensional subproblems is not unique
and we have presented a method which can be used to reduce the number of
subproblems.

The Decomposition Method and the technique for reducing subproblems are
illustrated with small numerical examples.

Appendices

Here we present the technical details of Procedierequired by the Decom-
position Method, Procedur&, (a conjugate direction procedure) which is used
by Procedure¥,, and Procedurel; which is used in reducing the number of
subproblems for the Decomposition Method.

Appendix A. Procedure ¥; (C)

Given an(n, n) symmetric matrixC, Procedurel;(C) determines whether or not
C is indefinite, positive semi-definite or negative semi-definite” i indefinite,
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Procedurel,(C) constructs twdn, n — 1) matricesD andQ with rank(D) =n—1
and rank(Q)= rank(C)— 1, and which satisfyC = %[D 0’ + 0D’]. In this case,
we write W1(C) = (Q, D). The details of Procedun&,(C) are as follows.

We first require arin, n) non-singular matrix\/ and an(n, n) diagonal matrix
A satisfyingM’'CM = A, where the diagonal elements af are all either—1,
0 or +1. Such matrices may be found by either performing an eigenvalue de-
composition forC or by using a modified conjugate direction method described
in Subsection Appendix B. The latter method is important because it requires
only O(n®) arithmetic operations. It is straightforward to show that the diagonal
elements ofA are all nonnegative if and only if' is positive semi-definite, and
are all non-positive if and only i€© is negative semi-definite. In either of these
cases, Procedung; (C) terminates with the relevant information. The remaining
possibility is thatA has two nonzero diagonal elements of opposite sign and this
is equivalent toC being indefinite. In this case, Procedug(C) continues as
follows.

Suppose and! are such that, anda,; are both nonzero, have opposite signs,
and assume < [. Theni,+A; = 0. Lete; denote thé-th unit vector of dimension
n —1.1fl < n, defineD and Q according to

D =1ley....e1.e.e,e51,....¢,1], and Q' = D'A.
If | = n, define
DA/ = [e1,...,e_1,¢e], and Q/ = DA/A.

Note thatD’ differs from the(n — 1,n — 1) identity r[\aAtrix by the insertion of,
after column/ — 1. It is straightforward to show thd? Q' differs from A only in
the (k, I)th and(/, k)th elements which are

(DO = m and (DO = .
But then), + A; = 0 implies

A = SO+ 0D
Thus

C = (M/)—lAM—l — [(M/)_lDQ/M_l—{-(M/)_lQ]A)/M_l]

1
2
and thus

D= WM)*D and Q0 = (M) 10

satisfy the conditions of Procedur®;. The procedure is then complete with
v1(C) = (Q, D).
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Appendix B. Procedure W, (C): a conjugate direction procedure

Conjugate directions are used in quadratic and nonlinear programming, usually in
the context of a positive definite Hessian. The basic ideas are as follows. dred
M be (n, n) matrices withC being symmetric and positive definite. The columns
of M are (normalized) conjugate directionsMfCM = I,. There are many ways
to construct conjugate directions. We shall generalize the method developed in [3]
for the case of indefinit€. The resulting matrixM will have the property that
M'C M is diagonal and the diagonal entries are eithdr ar —1.

Letk be such that K £ < n. Let

D' = [Cc1,Ccy, ..., Ccr_1,dy, ..., d,] (B.1)
and suppose

D' = [Bic1, BaCa, - Beo1Ck1, Chs - -+ Cul, (B.2)
whereg; = sign(c;Cc;) fori =1,... ,k — 1 and for any scala#

| 1 if6>0
3'9“(9):{—1 it 6 <0,

The process begins with= 1 andD is any non-singular matrix (e.g., the identity
matrix). By definition of the inverse matrix, for all j with1 <i, j <k —1
0, ifi#j,
c;Cc; = 1, ifi = jandsigrc;Cc;) =1, (B.3)
-1, ifi = jand sigric;Cc;) = —1.

DefiningM = [c1,¢2. .. , c,] it follows from (B.3) thatM'CM has ak — 1, k—1)
block diagonal submatrix in the top left corner whose diagonal entries are either 1
or—1.

We next show an updating procedure which will produce a Peand M hav-
ing the same structure but with— 1 replaced by. There are three cases to be
considered.

Case 1¢,Cc; #0.

For ease of notation, let, = (Ic,’{CckI)_%. Suppose we obtain a new matnX
from D’ by replacingd; with

d =y Ccy. (B.4)
Letting

Dr=1é1,....,¢.], (B.5)
it follows from the Sherman—Morrison formula [6], (see also [2]) that

G = Bici — $Ea, i=1... k-1,

Cr = ﬁc‘k, (B.6)

&:ci—j,/;‘;ck, i=k+1,...,n.
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From (B.1), (B.2) and the definition of the inverse matrix we have

dci=ycCe =0, i=1,... k-1 (B.7)
Thus, from (B.6)
5,':61', izl,...,k—l, (BS)

i.e., the firstt — 1 columns ofD 1 are unchanged by the update. Furthermore, from
(B.6) and (B.4)

-1

A W
Cr = A
¢, Ccr

whereg; = sign(c, Cc,) Summarizing (B.4), (B.5), (B.7) and (B.9) we have shown

cr = sign(c,Ceyrek = Br(vecr)s (B.9)

D' = [Cciy...,Ceron, C(yicr), disa, - -+ dy]
D™t = [Bict, s Brio1cho1s Br(Vhcr)s Chrts - - 5 Cul.

whereg, = sign(c,Ccy). ThusD’ and D~ are of precisely the same form &%
and D1, respectively, only withk — 1 replaced withk.

Case 2¢,Cc, =0and C¢ = 0.

In this caseg; is in the null space o and no update need be performed. Fur-
thermore, it follows from (B.6) that; will remain unchanged by further updates
corresponding to Case 1.

Case 3¢, Ccr =0and Cqg # 0.
First, we argue that there isja> k with

c,Ccj #0. (B.10)

For if not, by definition of the inverse matrix,Cc; = Ofori =1,... ,k -1,

c,Ccr = 0 by the assumption of Case 3 atjd’c; =0fori =k+1,... ,nasin

the present assumption. Thds; is orthogonal to: linearly independent vectors

and must be the zero vector. But this is in contradiction to the assumption of Case 3.
Consequently, there isja> k — 1 satisfying (B.10). Suppose next that we modify

D’ and D1 by replacinge, with ¢, + ¢; andd; with d; — di.. Then the modified

D’ and D! still satisfy (B.1) and (B.2). Furthermore,

(ck +¢;)Clex+c¢j) = 2¢;Ce; #0

and now Case 1 applies to the modified matrices.
Note thatD~! is not required for any computations and is only used for expos-
itory reasons. We next give a detailed statement of the algorithm.

Procedure ¥, (C)
Start withD=* =1, =[c1, ... ,c,]and fork = 1, ... , n, do the following.
Let D71 = [Bic1, Baca, -, Br1Ch—1s Chk» - -+ 5 Cul-
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Step 1If ¢;Cc # 0, sety, = (|c,/(Cck|)_%, Bx = sign(c;,Ccy), andd = y,Cc¢, and
computeD ! = [¢4, ... , é] where

6‘1':Ci, lzl,,k—l
Ck = BrYkCr,

A d'c; .

Ci = Ci — o Chs i=k+1,...,n.

ReplaceD 1 with D~ and continue.
Step 2If ¢,Cc; = 0 andC¢; = 0, setf, = 1, leaveD~* unchanged and continue.

Step 3If ¢;Cc, =0, andCc¢; # 0, determingj > k such thai,Cc; # 0, modify
D=1 by replacinge, with ¢, + ¢; and return to Step (1) with the modifigi—.
The properties of the conjugate direction method are summarized in

PROPOSITION B.1. Let the conjugate direction method be applied to the sym-
metric matrixC and letD~! = [Bic1, ... , Bac,] be the final matrix so obtained.
LetM = [c1,...,c,]. ThenM'CM = A, whereA is a diagonal matrix with all
diagonal entries being either1, 0 or +1. The number of arithmetic operations
required by it isO (n®).

EXAMPLE 4.1. We illustrate Procedur, by applying it to
0 1
= [ 0 0] |

InStep 1c7Cc1 = 0and Cq = (0, 1)’ # 0 so we go to Step 3 to determirie= 2
with ¢;Cc, = 1 and replaced ! = I, with

a1 10
=11 9]

We now return to Step 1 and determieie€c; = 2,1 = 1/+/2,d = 1/+/2(1, 1),
,81 =1, and,

1 _1
D_l == |: \? 12 :| .
/2 2
Returning to Step 1 fok = 2 we computecyCc, = —3, v, = 2, d =
1/v/2(1,-1), B = —1and

r-glt 4]
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From this we obtain

-3t 3]

and computél’CM = diag(1, —1).

Appendix C. Procedure¥; (C, M, J, k)

Theorem 3.1 provides a constructive procedure to obtain matficasd Q sat-
isfying (3.1) for the case that—1)’C M~ contains ak, k) indefinite principal
submatrix induced by the lagtrows and columns ofM~1)YCM~1. The purpose

of this section is to generalize the construction to the case witré)'C M~ has

an indefinite principal submatrix in a general position. We refer to this as Procedure
W3,

Procedure 3 (C, M, J, k)

Let C be an(n, n) symmetric matrix and/ be an(n, n) nonsingular matrix such
that (M~1YCM~1 contains a(k, k) indefinite principal submatrixt. Let J =
{v1, v2, ..., v«} be an ordered index set specifyiig i.e.,

(E)yj = (MYYCM™),,. 1<i, j<k,

and assume; < y» < ... < . Given the input dat&, M, J andk, Procedure
W3(C, M, J, k) constructs two matrice® and Q such thatC = %[DQ’ + QD'],
rank(D) = n — 1 and at least — k columns ofD are identical to: — k columns
of M'. The details of Procedurd&s(C, M, J, k) are as follows.

By invoking Procedurel;(E), we obtain two(k, k — 1) matricesD; and Qy
such that

1 !/ /
E =3DiQ; + QD).

Let Dy = (d.), Ok = (Guw), K ={1,... ,kyand(M~1yYCM~1 = (f;;). We next
construct matrice® = (d;;) andQ = (g;;) according to

fi=j,igJ, i<y,

ifi=j+1 1>y,

if j <y, i =y, j=y forsomeu,veKk,
otherwise,

OEQI |l
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and

fi ifi,j &J, j<vi
Zfij ifj¢],ie],j<yk,

~ _ ) 2figry i€l j=y

MW= figrn  Higd >
v if j <y, i =y, j=y,forsomeu,v ek,
0 otherwise

SettingD = M’D andQ = M’ Q completes the construction.
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